Amazon cover image
Image from Amazon.com
Image from Google Jackets
Image from OpenLibrary

Heuristics and optimization for knowledge discovery / [edited by] Ruhul A. Sarker, Hussein A. Abbass, Charles S. Newton.

Contributor(s): Material type: TextTextPublication details: Hershey : Idea Group Pub., c2002.Description: iii, 290 p. : illISBN:
  • 1930708262 (cloth)
Other title:
  • Heuristics & optimization for knowledge discovery [Cover title]
Subject(s): DDC classification:
  • 006.3 HEU
Online resources:
Contents:
Machine generated contents note: Prefacei -- Section One: Introduction -- Chapter 1.Introducing Data Mining and Knowledge Discovery1 -- R. Sarker, University of New South Wales, Australia -- H. Abbass, University of New South Wales, Australia -- C. Newton, University of New South Wales, Australia -- Section Two: Search and Optimization -- Chapter 2. A Heuristic Algorithm for Feature Selection Based on Optimization Techniques13 -- A.M. Bagirov, University of Ballarat, Australia -- A.M. Rubinov, University ofBallarat, Australia -- J. Yearwood, University ofBallarat, Australia -- Chapter 3. Cost-Sensitive Classification using Decision Trees,Boosting and Meta Cost27 -- Kai Mai Ting, Monash University, Australia -- Chapter 4. Heuristic Search-Based Stacking of Classifiers54 -- Agapito Ledezma, Universidad Carlos III de Madrid, Spain -- Ricardo Aler, Universidad Carlos III de Madrid, Spain -- Daniel Borrajo, Universidad Carlos III de Madrid, Spain -- Chapter 5. Designing Component-Based Heuristic Search Engines for Knowledge Discovery68 -- Craig M. Howard, Lanner Group Ltd. and University of East Anglia, UK -- Chapter 6. Clustering Mixed Incomplete Data 89 -- Jos6 Ruiz-Shulcloper, University of Tennessee, Knoxville, USA -- & Institute of Cybernetics, Mathematics and Physics, Havana, Cuba -- Guillermo Sanchez-Diaz, Autonomous University of the Hidalgo State, Mexico -- Mongi A. Abidi, University of Tennessee, Knoxville, USA -- Section Three: Statistics and Data Mining -- Chapter 7. Bayesian Learning . 108 -- Paula Macrossan, University of New England, Australia -- Kerrie Mengersen, University of Newcastle, Australia -- Chapter 8. How Size Matters: The Role of Sampling in Data Mining122 -- Paul D. Scott, University of Essex, UK -- Chapter 9. The Gamma Test142 -- Antonia J. Jones, Cardiff University, UK -- DafyddEvans, Cardiff University, UK -- Steve Margetts, Cardiff University, UK -- Peter J. Durrant, Cardiff University, UK -- Section Four: Neural Networks and Data Mining -- Chapter 10. Neural Networks-Their Use and Abuse for Small Data Sets169 -- Denny Meyer, Massey University at Albany, New Zealand -- Andrew Balemi, Colmar Brunton Ltd., New Zealand -- Chris Wearing, Colmar Brunton Ltd., New Zealand -- Chapter 11. How To Train Multilayer Perceptrons Efficiently -- With Large Data Sets186 -- Hyeyoung Park, Brain Science Institute, Japan -- Section Five: Applications -- Chapter 12. Cluster Analysis of Marketing Data Examining On-line -- Shopping Orientation: A Comparison ofk-means and Rough -- Clustering Approaches208 -- Kevin E. Voges, Griffith University, Australia -- Nigel K. Ll. Pope, Griffith University, Australia -- MarkR. Brown, Griffith University, Australia -- Chapter 13. Heuristics in Medical Data Mining226 -- Susan E. George, University of South Australia, Australia -- Chapter 14. Understanding Credit Card User's Behaviour: -- A Data Mining Approach241 -- A. de Carvalho, University of Guelph, Canada & University of Sio Paulo, Brazil -- A. Braga, Federal University of Minas Gerais, Brazil -- S. O. Rezende, University of Sao Paulo, Brazil -- T. Ludermir, Federal University ofPemambuco, Brazil -- E. Martineli, University of Sao Paulo, Brazil -- Chapter 15. Heuristic Knowledge Discovery for Archaeological -- Data Using Genetic Algorithms and Rough Sets263 -- Alina Lazar, Wayne State University, USA -- About the Authors279 -- Index287.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Home library Call number Status Date due Barcode
Book Book Dept. of Futures Studies Processing Center Dept. of Futures Studies 006.3 HEU (Browse shelf(Opens below)) Available DFS3187

Includes bibliographical references and index.

Machine generated contents note: Prefacei -- Section One: Introduction -- Chapter 1.Introducing Data Mining and Knowledge Discovery1 -- R. Sarker, University of New South Wales, Australia -- H. Abbass, University of New South Wales, Australia -- C. Newton, University of New South Wales, Australia -- Section Two: Search and Optimization -- Chapter 2. A Heuristic Algorithm for Feature Selection Based on Optimization Techniques13 -- A.M. Bagirov, University of Ballarat, Australia -- A.M. Rubinov, University ofBallarat, Australia -- J. Yearwood, University ofBallarat, Australia -- Chapter 3. Cost-Sensitive Classification using Decision Trees,Boosting and Meta Cost27 -- Kai Mai Ting, Monash University, Australia -- Chapter 4. Heuristic Search-Based Stacking of Classifiers54 -- Agapito Ledezma, Universidad Carlos III de Madrid, Spain -- Ricardo Aler, Universidad Carlos III de Madrid, Spain -- Daniel Borrajo, Universidad Carlos III de Madrid, Spain -- Chapter 5. Designing Component-Based Heuristic Search Engines for Knowledge Discovery68 -- Craig M. Howard, Lanner Group Ltd. and University of East Anglia, UK -- Chapter 6. Clustering Mixed Incomplete Data 89 -- Jos6 Ruiz-Shulcloper, University of Tennessee, Knoxville, USA -- & Institute of Cybernetics, Mathematics and Physics, Havana, Cuba -- Guillermo Sanchez-Diaz, Autonomous University of the Hidalgo State, Mexico -- Mongi A. Abidi, University of Tennessee, Knoxville, USA -- Section Three: Statistics and Data Mining -- Chapter 7. Bayesian Learning . 108 -- Paula Macrossan, University of New England, Australia -- Kerrie Mengersen, University of Newcastle, Australia -- Chapter 8. How Size Matters: The Role of Sampling in Data Mining122 -- Paul D. Scott, University of Essex, UK -- Chapter 9. The Gamma Test142 -- Antonia J. Jones, Cardiff University, UK -- DafyddEvans, Cardiff University, UK -- Steve Margetts, Cardiff University, UK -- Peter J. Durrant, Cardiff University, UK -- Section Four: Neural Networks and Data Mining -- Chapter 10. Neural Networks-Their Use and Abuse for Small Data Sets169 -- Denny Meyer, Massey University at Albany, New Zealand -- Andrew Balemi, Colmar Brunton Ltd., New Zealand -- Chris Wearing, Colmar Brunton Ltd., New Zealand -- Chapter 11. How To Train Multilayer Perceptrons Efficiently -- With Large Data Sets186 -- Hyeyoung Park, Brain Science Institute, Japan -- Section Five: Applications -- Chapter 12. Cluster Analysis of Marketing Data Examining On-line -- Shopping Orientation: A Comparison ofk-means and Rough -- Clustering Approaches208 -- Kevin E. Voges, Griffith University, Australia -- Nigel K. Ll. Pope, Griffith University, Australia -- MarkR. Brown, Griffith University, Australia -- Chapter 13. Heuristics in Medical Data Mining226 -- Susan E. George, University of South Australia, Australia -- Chapter 14. Understanding Credit Card User's Behaviour: -- A Data Mining Approach241 -- A. de Carvalho, University of Guelph, Canada & University of Sio Paulo, Brazil -- A. Braga, Federal University of Minas Gerais, Brazil -- S. O. Rezende, University of Sao Paulo, Brazil -- T. Ludermir, Federal University ofPemambuco, Brazil -- E. Martineli, University of Sao Paulo, Brazil -- Chapter 15. Heuristic Knowledge Discovery for Archaeological -- Data Using Genetic Algorithms and Rough Sets263 -- Alina Lazar, Wayne State University, USA -- About the Authors279 -- Index287.

There are no comments on this title.

to post a comment.