Heuristics and optimization for knowledge discovery / (Record no. 331698)

MARC details
000 -LEADER
fixed length control field 04161cam a22002174a 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 1930708262 (cloth)
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.3
Item number HEU
245 00 - TITLE STATEMENT
Title Heuristics and optimization for knowledge discovery /
Statement of responsibility, etc. [edited by] Ruhul A. Sarker, Hussein A. Abbass, Charles S. Newton.
246 14 - VARYING FORM OF TITLE
Title proper/short title Heuristics & optimization for knowledge discovery.
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Hershey :
Name of publisher, distributor, etc. Idea Group Pub.,
Date of publication, distribution, etc. c2002.
300 ## - PHYSICAL DESCRIPTION
Extent iii, 290 p. :
Other physical details ill. ;
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Includes bibliographical references and index.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note Machine generated contents note: Prefacei -- Section One: Introduction -- Chapter 1.Introducing Data Mining and Knowledge Discovery1 -- R. Sarker, University of New South Wales, Australia -- H. Abbass, University of New South Wales, Australia -- C. Newton, University of New South Wales, Australia -- Section Two: Search and Optimization -- Chapter 2. A Heuristic Algorithm for Feature Selection Based on Optimization Techniques13 -- A.M. Bagirov, University of Ballarat, Australia -- A.M. Rubinov, University ofBallarat, Australia -- J. Yearwood, University ofBallarat, Australia -- Chapter 3. Cost-Sensitive Classification using Decision Trees,Boosting and Meta Cost27 -- Kai Mai Ting, Monash University, Australia -- Chapter 4. Heuristic Search-Based Stacking of Classifiers54 -- Agapito Ledezma, Universidad Carlos III de Madrid, Spain -- Ricardo Aler, Universidad Carlos III de Madrid, Spain -- Daniel Borrajo, Universidad Carlos III de Madrid, Spain -- Chapter 5. Designing Component-Based Heuristic Search Engines for Knowledge Discovery68 -- Craig M. Howard, Lanner Group Ltd. and University of East Anglia, UK -- Chapter 6. Clustering Mixed Incomplete Data 89 -- Jos6 Ruiz-Shulcloper, University of Tennessee, Knoxville, USA -- & Institute of Cybernetics, Mathematics and Physics, Havana, Cuba -- Guillermo Sanchez-Diaz, Autonomous University of the Hidalgo State, Mexico -- Mongi A. Abidi, University of Tennessee, Knoxville, USA -- Section Three: Statistics and Data Mining -- Chapter 7. Bayesian Learning . 108 -- Paula Macrossan, University of New England, Australia -- Kerrie Mengersen, University of Newcastle, Australia -- Chapter 8. How Size Matters: The Role of Sampling in Data Mining122 -- Paul D. Scott, University of Essex, UK -- Chapter 9. The Gamma Test142 -- Antonia J. Jones, Cardiff University, UK -- DafyddEvans, Cardiff University, UK -- Steve Margetts, Cardiff University, UK -- Peter J. Durrant, Cardiff University, UK -- Section Four: Neural Networks and Data Mining -- Chapter 10. Neural Networks-Their Use and Abuse for Small Data Sets169 -- Denny Meyer, Massey University at Albany, New Zealand -- Andrew Balemi, Colmar Brunton Ltd., New Zealand -- Chris Wearing, Colmar Brunton Ltd., New Zealand -- Chapter 11. How To Train Multilayer Perceptrons Efficiently -- With Large Data Sets186 -- Hyeyoung Park, Brain Science Institute, Japan -- Section Five: Applications -- Chapter 12. Cluster Analysis of Marketing Data Examining On-line -- Shopping Orientation: A Comparison ofk-means and Rough -- Clustering Approaches208 -- Kevin E. Voges, Griffith University, Australia -- Nigel K. Ll. Pope, Griffith University, Australia -- MarkR. Brown, Griffith University, Australia -- Chapter 13. Heuristics in Medical Data Mining226 -- Susan E. George, University of South Australia, Australia -- Chapter 14. Understanding Credit Card User's Behaviour: -- A Data Mining Approach241 -- A. de Carvalho, University of Guelph, Canada & University of Sio Paulo, Brazil -- A. Braga, Federal University of Minas Gerais, Brazil -- S. O. Rezende, University of Sao Paulo, Brazil -- T. Ludermir, Federal University ofPemambuco, Brazil -- E. Martineli, University of Sao Paulo, Brazil -- Chapter 15. Heuristic Knowledge Discovery for Archaeological -- Data Using Genetic Algorithms and Rough Sets263 -- Alina Lazar, Wayne State University, USA -- About the Authors279 -- Index287.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Heuristic programming.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Combinatorial optimization.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Sarker, Ruhul A.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Abbass, Hussein A.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Newton, Charles S.
856 41 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="http://www.loc.gov/catdir/toc/fy031/2001039720.html">http://www.loc.gov/catdir/toc/fy031/2001039720.html</a>
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Book
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Shelving location Date acquired Total Checkouts Full call number Barcode Date last seen Price effective from Koha item type
        Dept. of Futures Studies Dept. of Futures Studies Processing Center 24/12/2019   006.3 HEU DFS3187 24/12/2019 24/12/2019 Book