000 03171cam a22005175i 4500
001 21936806
003 OSt
005 20220106022457.0
006 m |o d |
007 cr |||||||||||
008 131106s2014 gw |||| o |||| 0|eng
010 _a 2019767835
020 _a9783319020457
024 7 _a10.1007/978-3-319-02045-7
_2doi
035 _a(DE-He213)978-3-319-02045-7
040 _aDLC
_beng
_epn
_erda
_cDLC
072 7 _aMAT037000
_2bisacsh
072 7 _aPBKF
_2bicssc
072 7 _aPBKF
_2thema
082 0 4 _a515.7
_223
100 1 _aOsborne, M. Scott,
_eauthor.
245 1 0 _aLocally Convex Spaces /
_cby M. Scott Osborne.
250 _a1st ed. 2014.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2014.
300 _a1 online resource (VIII, 213 pages 5 illustrations)
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aGraduate Texts in Mathematics,
_x0072-5285 ;
_v269
505 0 _a1 Topological Groups -- 2 Topological Vector Spaces -- 3 Locally Convex Spaces -- 4 The Classics -- 5 Dual Spaces -- 6 Duals of Fré chet Spaces -- A Topological Oddities -- B Closed Graphs in Topological Groups -- C The Other Krein-Smulian Theorem -- D Further Hints for Selected Exercises -- Bibliography -- Index.
520 _aFor most practicing analysts who use functional analysis, the restriction to Banach spaces seen in most real analysis graduate texts is not enough for their research. This graduate text, while focusing on locally convex topological vector spaces, is intended to cover most of the general theory needed for application to other areas of analysis. Normed vector spaces, Banach spaces, and Hilbert spaces are all examples of classes of locally convex spaces, which is why this is an important topic in functional analysis. While this graduate text focuses on what is needed for applications, it also shows the beauty of the subject and motivates the reader with exercises of varying difficulty. Key topics covered include point set topology, topological vector spaces, the Hahn-Banach theorem, seminorms and Fréchet spaces, uniform boundedness, and dual spaces. The prerequisite for this text is the Banach space theory typically taught in a beginning graduate real analysis course.
588 _aDescription based on publisher-supplied MARC data.
650 0 _aFunctional analysis.
650 0 _aLie groups.
650 0 _aTopological groups.
650 1 4 _aFunctional Analysis.
_0https://scigraph.springernature.com/ontologies/product-market-codes/M12066
650 2 4 _aTopological Groups, Lie Groups.
_0https://scigraph.springernature.com/ontologies/product-market-codes/M11132
776 0 8 _iPrint version:
_tLocally convex spaces
_z9783319020440
_w(DLC) 2013951652
776 0 8 _iPrinted edition:
_z9783319020440
776 0 8 _iPrinted edition:
_z9783319020464
776 0 8 _iPrinted edition:
_z9783319343747
830 0 _aGraduate Texts in Mathematics,
_x0072-5285 ;
_v269
906 _a0
_bibc
_corigres
_du
_encip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c449098
_d449098