000 01908nam a22001817a 4500
999 _c296486
_d296486
020 _a9781466595002
082 _a572.88 KOR-R
100 _a Eija Korpelainen
245 _aRNA-Seq Data Analysis : A practical approach
260 _a Boca Raton
_b CRC Press, Taylor & Francis Group
_c2015
300 _a xxiv, 298 p. : ill ; 24 cm.
490 _a Chapman and Hall/CRC mathematical & computational biology series.
505 _a Chapter 1. Introduction to RNA-seq -- chapter 2. Introduction to RNA-seq data analysis -- chapter 3. Quality control and preprocessing -- chapter 4. Aligning reads to reference -- chapter 5. Transcriptome assembly -- chapter 6. Quantitation and annotation-based quality control -- chapter 7. RNA-seq analysis framework in R and bioconductor -- chapter 8. Differential expression analysis -- chapter 9. Analysis of differential exon usage -- chapter 10. Annotating the results -- chapter 11. Visualization -- chapter 12. Small noncoding RNAs -- chapter 13. Computational analysis of small noncoding RNA sequencing data.
520 _a "RNA-seq offers unprecedented information about transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. This self-contained guide enables researchers to examine differential expression at gene, exon, and transcript level and to discover novel genes, transcripts, and whole transcriptomes. Each chapter starts with theoretical background, followed by descriptions of relevant analysis tools. The book also provides examples using command line tools and the R statistical environment. For non-programming scientists, the same examples are covered using open source software with a graphical user interface"-
650 _a RNA -- Analysis. Sequence Analysis, RNA -- methods. Transcriptome.
700 _aJarno Tuimala; Panu Somervuo; Mikael Huss; Garry Wong
942 _cBK