Amazon cover image
Image from Amazon.com
Image from Google Jackets
Image from OpenLibrary

Data mining : a heuristic approach / [edited by] Hussein A. Abbass, Ruhul A. Sarker, Charles S. Newton.

Contributor(s): Material type: TextTextPublication details: Hershey : Idea Group, c2002.Description: iv, 300 p. : illISBN:
  • 1930708254
Subject(s): DDC classification:
  • 006.3 DAT
Online resources:
Contents:
Machine generated contents note: Part One: General Heuristics -- Chapter 1: From Evolution to Immune to Swarm to? -- A Simple Introduction to Modern Heuristics1 -- Hussein A. Abbass, University of New South Wales, Australia -- Chapter 2: Approximating Proximityfor Fast andRobust -- Distance-Based Clustering22 -- Vladimir Estivill-Castro, University of Newcastle, Australia -- Michael Houle, University of Sydney, Australia -- Part Two: Evolutionary Algorithms -- Chapter3: On the Use of Evolutionary Algorithmsin Data Mining48 -- Erick Cantu-Paz, Lawrence Livermore National Laboratory, USA -- Chandrika Kamath, Lawrence Livermore National Laboratory, USA -- Chapter 4: The discovery of interesting nuggets using heuristic techniques72 -- Beatriz de la Iglesia, University of East Anglia, UK -- Victor J. Rayward-Smith, University of East Anglia, UK -- Chapter5: Estimation of Distribution Algorithms forFeature Subset -- Selection in Large Dimensionality Domains97 -- Ifiaki Inza, University of the Basque Country, Spain -- Pedro Larranaga, University of the Basque Country, Spain -- Basilio Sierra, University of the Basque Country, Spain -- Chapter 6: Towards the Cross-Fertilization of Multiple Heuristics: -- Evolving Teams of Local Bayesian Learners117 -- Jorge Muruzdbal, Universidad Rey Juan Carlos, Spain -- Chapter 7: Evolution of SpatialData Templates for Object Classification143 -- Neil Dunstan, University of New England, Australia -- Michael de Raadt, University of Southern Queensland, Australia -- Part Three: Genetic Programming -- Chapter 8: Genetic Programming as a Data-Mining Tool157 -- Peter W.H. Smith, City University, UK -- Chapter 9: A Building BlockApproach to Genetic Programming -- for Rule Discovery174 -- A.P. Engelbrecht, University of Pretoria, South Africa -- Sonja Rouwhorst, Vrije Universiteit Amsterdam, The Netherlands -- L. Schoeman, University of Pretoria, South Africa -- Part Four: Ant Colony Optimization and Immune Systems -- Chapter 10: An Ant Colony Algorithm for Classification Rule Discovery 191 -- Rafael S. Parpinelli, Centro Federal de Educacao Tecnologica do Parana, Brazil -- Heitor S. Lopes, Centro Federal de Educacao Tecnologica do Parana, Brazil -- Alex A. Freitas, Pontificia Universidade Catolica do Parana, Brazil -- Chapter 11: ArtificialImmune Systems: Using the Immune System -- as Inspiration forDataMining209 -- Jon Timmis, University of Kent at Canterbury, UK -- Thomas Knight, University of Kent at Canterbury, UK -- Chapter 12: aiNet: An Artificial Immune Network for Data Analysis231 -- Leandro Nunes de Castro, State University of Campinas, Brazil -- Fernando J. Von Zuben, State University of Campinas, Brazil -- Part Five: Parallel Data Mining -- Chapter 13: Parallel Data Mining261 -- David Taniar, Monash University, Australia -- J. Wenny Rahayu, La Trobe University, Australia.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Home library Call number Status Date due Barcode
Book Book Dept. of Futures Studies Processing Center Dept. of Futures Studies 006.3 DAT (Browse shelf(Opens below)) Available DFS3195

Includes bibliographical references and index.

Machine generated contents note: Part One: General Heuristics -- Chapter 1: From Evolution to Immune to Swarm to? -- A Simple Introduction to Modern Heuristics1 -- Hussein A. Abbass, University of New South Wales, Australia -- Chapter 2: Approximating Proximityfor Fast andRobust -- Distance-Based Clustering22 -- Vladimir Estivill-Castro, University of Newcastle, Australia -- Michael Houle, University of Sydney, Australia -- Part Two: Evolutionary Algorithms -- Chapter3: On the Use of Evolutionary Algorithmsin Data Mining48 -- Erick Cantu-Paz, Lawrence Livermore National Laboratory, USA -- Chandrika Kamath, Lawrence Livermore National Laboratory, USA -- Chapter 4: The discovery of interesting nuggets using heuristic techniques72 -- Beatriz de la Iglesia, University of East Anglia, UK -- Victor J. Rayward-Smith, University of East Anglia, UK -- Chapter5: Estimation of Distribution Algorithms forFeature Subset -- Selection in Large Dimensionality Domains97 -- Ifiaki Inza, University of the Basque Country, Spain -- Pedro Larranaga, University of the Basque Country, Spain -- Basilio Sierra, University of the Basque Country, Spain -- Chapter 6: Towards the Cross-Fertilization of Multiple Heuristics: -- Evolving Teams of Local Bayesian Learners117 -- Jorge Muruzdbal, Universidad Rey Juan Carlos, Spain -- Chapter 7: Evolution of SpatialData Templates for Object Classification143 -- Neil Dunstan, University of New England, Australia -- Michael de Raadt, University of Southern Queensland, Australia -- Part Three: Genetic Programming -- Chapter 8: Genetic Programming as a Data-Mining Tool157 -- Peter W.H. Smith, City University, UK -- Chapter 9: A Building BlockApproach to Genetic Programming -- for Rule Discovery174 -- A.P. Engelbrecht, University of Pretoria, South Africa -- Sonja Rouwhorst, Vrije Universiteit Amsterdam, The Netherlands -- L. Schoeman, University of Pretoria, South Africa -- Part Four: Ant Colony Optimization and Immune Systems -- Chapter 10: An Ant Colony Algorithm for Classification Rule Discovery 191 -- Rafael S. Parpinelli, Centro Federal de Educacao Tecnologica do Parana, Brazil -- Heitor S. Lopes, Centro Federal de Educacao Tecnologica do Parana, Brazil -- Alex A. Freitas, Pontificia Universidade Catolica do Parana, Brazil -- Chapter 11: ArtificialImmune Systems: Using the Immune System -- as Inspiration forDataMining209 -- Jon Timmis, University of Kent at Canterbury, UK -- Thomas Knight, University of Kent at Canterbury, UK -- Chapter 12: aiNet: An Artificial Immune Network for Data Analysis231 -- Leandro Nunes de Castro, State University of Campinas, Brazil -- Fernando J. Von Zuben, State University of Campinas, Brazil -- Part Five: Parallel Data Mining -- Chapter 13: Parallel Data Mining261 -- David Taniar, Monash University, Australia -- J. Wenny Rahayu, La Trobe University, Australia.

There are no comments on this title.

to post a comment.