Amazon cover image
Image from Amazon.com
Image from Google Jackets
Image from OpenLibrary

Data mining and data warehousing: Principles and practical techniques

By: Material type: TextTextPublication details: New Delhi: Cambridge University Press, 2019.ISBN:
  • 9781108727747
DDC classification:
  • 006.3 BHA-D
Contents:
Beginning with machine learning -- Introduction to data mining -- Beginning with Weka and R language -- Data preprocessing -- Classification -- Implementing classification in Weka and R -- Cluster analysis -- Implementing clustering with Weka and R -- Association mining -- Implementing association mining with Weka and R -- Web mining and search engines -- Data warehouse -- Data warehouse schema -- Online analytical processing -- Big data and NoSQL.
Summary: "This textbook is written to cater to the needs of undergraduate students of computer science, engineering, and information technology for a course on data mining and data warehousing. It brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models, and NoSQL are discussed in detail. Unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding"--
Tags from this library: No tags from this library for this title. Log in to add tags.

Beginning with machine learning -- Introduction to data mining -- Beginning with Weka and R language -- Data preprocessing -- Classification -- Implementing classification in Weka and R -- Cluster analysis -- Implementing clustering with Weka and R -- Association mining -- Implementing association mining with Weka and R -- Web mining and search engines -- Data warehouse -- Data warehouse schema -- Online analytical processing -- Big data and NoSQL.

"This textbook is written to cater to the needs of undergraduate students of computer science, engineering, and information technology for a course on data mining and data warehousing. It brings together fundamental concepts of data mining and data warehousing in a single volume. Important topics including information theory, decision tree, Naïve Bayes classifier, distance metrics, partitioning clustering, associate mining, data marts and operational data store are discussed comprehensively. The text simplifies the understanding of the concepts through exercises and practical examples. Chapters such as classification, associate mining and cluster analysis are discussed in detail with their practical implementation using Weka and R language data mining tools. Advanced topics including big data analytics, relational data models, and NoSQL are discussed in detail. Unsolved problems and multiple-choice questions are interspersed throughout the book for better understanding"--

There are no comments on this title.

to post a comment.