Amazon cover image
Image from Amazon.com
Image from Google Jackets
Image from OpenLibrary

Methods for Computational Gene Prediction

By: Material type: TextTextPublication details: New York Cambridge University Press 2007Description: xvii, 430 pages : illustrations ; 26 cmISBN:
  • 9780521706940
Subject(s): DDC classification:
  • 572.860285 MAJ-M
Contents:
1. Introduction -- 2. Mathematical preliminaries -- 3. Overview of gene prediction -- 4. Gene finder evaluation -- 5. A toy Exon finder -- 6. Hidden Markov models -- 7. Signal and content sensors -- 8. Generalized hidden Markov models -- 9. Comparative gene finding -- 10. Machine Learning methods -- 11. Tips and tricks -- 12. Advanced topics
Summary: Inferring the precise locations and splicing patterns of genes in DNA is a difficult but important task, with broad applications to biomedicine. The mathematical and statistical techniques that have been applied to this problem are surveyed and organized into a logical framework based on the theory of parsing. Both established approaches and methods at the forefront of current research are discussed. Numerous case studies of existing software systems are provided, in addition to detailed examples that work through the actual implementation of effective gene-predictors using hidden Markov models and other machine-learning techniques. Background material on probability theory, discrete mathematics, computer science, and molecular biology is provided, making the book accessible to students and researchers from across the life and computational sciences. This book is ideal for use in a first course in bioinformatics at graduate or advanced undergraduate level, and for anyone wanting to keep pace with this rapidly-advancing field.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Home library Call number Status Date due Barcode
Book Book Dept. of Computational Biology and Bioinformatics Processing Center Dept. of Computational Biology and Bioinformatics 572.860285 MAJ-M (Browse shelf(Opens below)) Available DCB1249

1. Introduction -- 2. Mathematical preliminaries -- 3. Overview of gene prediction -- 4. Gene finder evaluation -- 5. A toy Exon finder -- 6. Hidden Markov models -- 7. Signal and content sensors -- 8. Generalized hidden Markov models -- 9. Comparative gene finding -- 10. Machine Learning methods -- 11. Tips and tricks -- 12. Advanced topics

Inferring the precise locations and splicing patterns of genes in DNA is a difficult but important task, with broad applications to biomedicine. The mathematical and statistical techniques that have been applied to this problem are surveyed and organized into a logical framework based on the theory of parsing. Both established approaches and methods at the forefront of current research are discussed. Numerous case studies of existing software systems are provided, in addition to detailed examples that work through the actual implementation of effective gene-predictors using hidden Markov models and other machine-learning techniques. Background material on probability theory, discrete mathematics, computer science, and molecular biology is provided, making the book accessible to students and researchers from across the life and computational sciences. This book is ideal for use in a first course in bioinformatics at graduate or advanced undergraduate level, and for anyone wanting to keep pace with this rapidly-advancing field.

There are no comments on this title.

to post a comment.