Amazon cover image
Image from Amazon.com
Image from Google Jackets
Image from OpenLibrary

Hidden Markov Models for Bioinformatics

Material type: TextTextEdition: 1Description: 416ISBN:
  • 1402001363
Subject(s): DDC classification:
  • 572.8/633 KOS-H
Summary: The purpose of this book is to give a thorough and systematic introduction to probabilistic modeling in bioinformatics. The book contains a mathematically strict and extensive presentation of the kind of probabilistic models that have turned out to be useful in genome analysis. Questions of parametric inference, selection between model families, and various architectures are treated. Several examples are given of known architectures (e.g., profile HMM) used in genome analysis. Audience: This book will be of interest to advanced undergraduate and graduate students with a fairly limited background in probability theory, but otherwise well trained in mathematics and already familiar with at least some of the techniques of algorithmic sequence analysis.
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Home library Call number Status Date due Barcode
Book Book Dept. of Computational Biology and Bioinformatics Processing Center Dept. of Computational Biology and Bioinformatics 572.8/633 KOS-H (Browse shelf(Opens below)) Available DCB293

The purpose of this book is to give a thorough and systematic introduction to probabilistic modeling in bioinformatics. The book contains a mathematically strict and extensive presentation of the kind of probabilistic models that have turned out to be useful in genome analysis. Questions of parametric inference, selection between model families, and various architectures are treated. Several examples are given of known architectures (e.g., profile HMM) used in genome analysis. Audience: This book will be of interest to advanced undergraduate and graduate students with a fairly limited background in probability theory, but otherwise well trained in mathematics and already familiar with at least some of the techniques of algorithmic sequence analysis.

There are no comments on this title.

to post a comment.