Analyzing network data in biology and medicine: An interdisciplinary textbook for biological, medical and computational scientists (Record no. 584776)

MARC details
000 -LEADER
fixed length control field 02551cam a22001698i 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781108432238 (hardback : alk. paper)
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 570.285
Item number PRZ.A
245 00 - TITLE STATEMENT
Title Analyzing network data in biology and medicine: An interdisciplinary textbook for biological, medical and computational scientists
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. New York
Name of publisher, distributor, etc. Cambridge University Press
Date of publication, distribution, etc. 2019
300 ## - PHYSICAL DESCRIPTION
Extent xiv, 632 p. ill. 27 cm
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note 1. From genetic data to medicine: from DNA samples to disease risk prediction in personalized genetic tests Luis Leal, Rok Kosir and Natasa Przulj; 2. Epigenetic data and disease Rodrigo Gonzalez-Barrios, Marisol Salgado-Albarran, Nicolas Alcaraz, Cristian Arriaga-Canon, Lissania Guerra-Calderas, Laura Contreras-Espinoza and Ernesto Soto-Reyes; 3. Introduction to graph and network theory Thomas Gaudelet and Natasa Przulj; 4. Protein-protein interaction data, their quality, and major public databases Anne-Christin Hauschild, Chiara Pastrello, Max Kotlyar and Igor Jurisica; 5. Graphlets in network science and computational biology Khalique Newaz and Tijana Milenkovic; 6. Cluster analysis Richard Roettger; 7. Machine learning for data integration in cancer precision medicine: matrix factorization approaches Noel Malod-Dognin, Sam Windels and Natasa Przulj; 8. Machine learning for biomarker discovery: significant pattern mining F. Llinares-Lopez and K. Borgwardt; 9. Network alignment Noel Malod-Dogning and Natasa Przulj; 10. Network medicine Pisanu Buphamalai, Michael Caldera, Felix Muller and Joerg Menche; 11. Elucidating genotype-to-phenotype relationships via analyzes of human tissue interactomes Idan Hekselman, Moran Sharon, Omer Basha and Esti Yeger-Lotem; 12. Network neuroscience Alberto Cacciola, Alessandro Muscoloni and Carlo Vittorio Cannistraci; 13. Cytoscape: tool for analyzing and visualizing network data John H. Morris; 14. Analysis of the signatures of cancer stem cells in malignant tumours using protein interactomes and STRING database Kresimir Pavelic, Marko Klobucar, Dolores Kuzelj, Natasa Przulj and Sandra Kraljevic Pavelic.
520 ## - SUMMARY, ETC.
Summary, etc. Bringing together leading experts in the field of network data analysis, this text introduces graph and network theory, cluster analysis and machine learning. Using real-world biological and medical examples, applications of these theories are discussed and creative thinking is encouraged in the analysis of such complex network data sets.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Medical informatics
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name entry element Bioinformatics.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Przulj, Natasa,
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Book

No items available.